Consider the pseudo code below to obtain the efficient portf…

Consider the pseudo code below to obtain the efficient portfolios:from scipy.optimize import minimize f = lambda w: TO BE FILLED mu = np.linspace(15, 30, 31) sd_optimal = np.zeros_like(mu) w_optimal = np.zeros() for i in range(len(mu)): # Optimization Constraints cons = ({‘type’:’eq’, ‘fun’: lambda w: np.sum(w) – 1}, {‘type’:’eq’, ‘fun’: lambda w: w @ ER * 252 * 100 – mu}) result = minimize(f, np.zeros(5), constraints=cons) w_optimal = result.x sd_optimal = np.sqrt(result.fun)Assuming that ER are Cov given, what should we substitute TO BE FILLED for in order to get the desired result?