Essay – Craft an essay with a defensible thesis that directl…

Essay – Craft an essay with a defensible thesis that directly addresses only one of the prompts.   A.  What are the most important and applicable lessons learned from the turbulent events during the years 1914–1945?   OR   B.  To what extent was Nazism inevitable?   OR   C. In lecture we discussed how WWI and WWII were two parts of one larger conflict. Build as essay that explores this relationship.       Essay Outline   I. THESIS (Should make a defensible claim that directly addresses the question and highlights specific themes/arguments.)     II. Themes/Arguments (Evidence should validate your themes/arguments in answering your thesis)                     – Theme/Argument  A                                     – Supporting evidence                                      – Supporting evidence                                     – Supporting evidence                                     – etc.                     – Theme/Argument  B                                     – Supporting evidence                                      – Supporting evidence                                     – Supporting evidence                                     – etc.                     – Theme/Argument  C                                     – Supporting evidence                                      – Supporting evidence                                     – Supporting evidence                                     – etc.                     – Etc.

Come up with your own non-constant conservative vector field…

Come up with your own non-constant conservative vector field F→\style{font-size:35px}{\vec{F}}. Show that is it conservative. Then, find the work done by F→\style{font-size:35px}{\vec{F}} over the curve starting at (5,5)\style{font-size:35px}{(5,5)}, looping around the arrow on the x-\style{font-size:35px}{x-}axis, visiting Neptune, traveling to another universe, then coming back and ending up back at (5,5)\style{font-size:35px}{(5,5)}.Hint: work can be represented by ∫CF→∙ dr→\style{font-size:35px}{\int_C{\vec{F}\bullet\ d\vec{r}}}.

Evaluate the integral ∫∫Q∫xz dV\style{font-size:35px}{\int\i…

Evaluate the integral ∫∫Q∫xz dV\style{font-size:35px}{\int\int\limits_Q\int{xz\ dV}} where Q\style{font-size:35px}{Q} is the quarter of the unit sphere x2+y2+z2=1\style{font-size:35px}{x^2+y^2+z^2=1} in octants I and IV (i.e. with 0≤x≤1\style{font-size:35px}{0\leq x\leq 1}, -1≤y≤1\style{font-size:35px}{-1\leq y\leq 1}, and 0≤z≤1\style{font-size:35px}{0\leq z\leq 1}).

Evaluate ∫C(-y-2x) dx+(2x+8y) dy\style{font-size:35px}{\int_…

Evaluate ∫C(-y-2x) dx+(2x+8y) dy\style{font-size:35px}{\int_C{(-y-2x)\ dx + (2x+8y)\ dy}} where C\style{font-size:35px}{C} is the curve y=x2\style{font-size:35px}{y=x^2} from (0,0)\style{font-size:35px}{(0,0)} to (2,4)\style{font-size:35px}{(2,4)}, by first parametrizing C\style{font-size:35px}{C} as r→(t)\style{font-size:35px}{\vec{r}(t)}.