(01.06 LC) Angles BAE and FAC are straight angles. What angle relationship best describes angles BAC and DAC?
(01.02 MC) Which of the following is the final step in bise…
(01.02 MC) Which of the following is the final step in bisecting an angle?
(01.03 LC) What is a necessary step for constructing parall…
(01.03 LC) What is a necessary step for constructing parallel lines?
(01.01 MC) Which statement explains the difference between…
(01.01 MC) Which statement explains the difference between a plane and a ray?
(01.07 MC) Julia is designing a frame for a client. She want…
(01.07 MC) Julia is designing a frame for a client. She wants to prove to her client that m∠AGE ≅ m∠FHD in her sketch. What is the missing justification in the proof? Statement Justification with transversal Given m∠AGE ≅ m∠HGB Vertical Angles Theorem m∠HGB ≅ m∠FHD ∠AGE ≅ ∠FHD Transitive Property
(03.01 MC) Line g is dilated by a scale factor of 3 from the…
(03.01 MC) Line g is dilated by a scale factor of 3 from the origin to create line g’. Where are points E’ and F’ located after dilation, and how are lines g and g’ related?
(01.07 LC) What angle relationship describes ∠SQU and ∠RQV?
(01.07 LC) What angle relationship describes ∠SQU and ∠RQV?
(01.06 MC) Kyle is creating a frame for a model car. He be…
(01.06 MC) Kyle is creating a frame for a model car. He begins by piecing two rods together, as shown in the diagram. Justify why AB = 10.
(03.06 MC) If j = h and k = m, then which expression represe…
(03.06 MC) If j = h and k = m, then which expression represents the value of g?
(01.07 MC) Greg is constructing a fence that consists of pa…
(01.07 MC) Greg is constructing a fence that consists of parallel sides and . Complete the proof to explain how he can show that m∠FAC = 121° by finding the missing justifications. Statement Justification ∥ m∠ECG = 121° Given m∠ECG + m∠ECA = 180° Linear Pair Postulate m∠FAC + m∠ECA = 180° 1. m∠ECG + m∠ECA = m∠FAC + m∠ECA Transitive Property m∠ECG = m∠FAC Subtraction Property m∠FAC = m∠ECG Symmetric Property m∠FAC = 121° 2.