A chef in a restaurant that specializes in pasta dishes was…

A chef in a restaurant that specializes in pasta dishes was having trouble with getting brands of pasta to be al dente – that is, cooked enough so as not to feel starchy or hard but still feel firm when bitten into.  She decided to conduct an experiment in which two brands of pasta, one American and one Italian, were cooked for either 4 or 8 minutes.   The uncooked pasta was added and then weighed after a given period of time by lifting the pasta from the pot via a built-in strainer.    The data (in terms of weight in grams) is here:     Four Eight American 265 310   270 320 Italian 250 300   245 305   And partial two-way ANOVA results (a = 0.05) are below:   ANOVA             Source of Variation SS df MS F P-value F crit Sample 528.125 1 528.125 24.14286 0.007966 7.708647 Columns 5253.125 1 5253.125 240.1429 0.000101 7.708647 Interaction 28.125 1 28.125 1.285714 0.320188 7.708647 Within 87.5 4 21.875                     Total 5896.875 7         According to the results, what do we determine about the cooking time?

We develop a regression model to predict the assessed value…

We develop a regression model to predict the assessed value of houses, using the size of the houses (in square feet) and the age of the houses (in years). Below, we observe partial results of running a multiple regression: Multiple R 0.909120107           R Square 0.826499369           Adjusted R Square 0.797582598           Standard Error 2168.165527           Observations 15                         ANOVA               df SS MS F     Regression 2 268724699 134362349.5 28.58200688     Residual 12 56411301.01 4700941.751       Total 14 325136000                         Coefficients Standard Error t Stat P-value Upper 95% Lower 95.0% Intercept 163775.1236 5407.173152 30.28849253 1.05104E-12 175556.3418 151993.9054 Size 10.72518298 3.014327189 3.558068619 0.003937797 17.29283773 4.157528235 Age -284.254348 83.59835914 -3.400238365 0.005267391 -102.1091708 -466.3995252 The multiple regression equation is:

Consider the one-way ANOVA results below, which compare down…

Consider the one-way ANOVA results below, which compare download times of three different types of computers: Anova: Single Factor             SUMMARY             Groups Count Sum Average Variance     MAC 10 1606 160.6 508.0444444     iMAC 10 1831 183.1 188.1     Dell 10 2560 256 214.6666667       ANOVA             Source of Variation SS Df MS F P-value F crit Between Groups 49739.4 2 24869.7 81.9150086 3.42516E-12 3.354130829 Within Groups 8197.3 27 303.6037037       Total 57936.7 29         At the α=0.05{“version”:”1.1″,”math”:”α=0.05″} level of significance, the F  test statistic is:

Consider the data below, which compares different teaching m…

Consider the data below, which compares different teaching methods:                       Dramatic Enactments              Seminar Case          Mix of  Lecture          Method by Students               Discussions         Three Methods    n = 7                           n = 7                             n = 7                   n = 7  x¯=25{“version”:”1.1″,”math”:”x¯=25″}                         x¯=33{“version”:”1.1″,”math”:”x¯=33″}                           x¯=31{“version”:”1.1″,”math”:”x¯=31″}                 x¯=27{“version”:”1.1″,”math”:”x¯=27″}  s2=46{“version”:”1.1″,”math”:”s2=46″}                            s2=43{“version”:”1.1″,”math”:”s2=43″}                             s2=44{“version”:”1.1″,”math”:”s2=44″}                   s2=27{“version”:”1.1″,”math”:”s2=27″}                   The value of the F test statistic is:

We develop a regression model to predict the assessed value…

We develop a regression model to predict the assessed value of houses, using the size of the houses (in square feet) and the age of the houses (in years). Below, we observe partial results of running a multiple regression: Multiple R 0.909120107           R Square 0.826499369           Adjusted R Square 0.797582598           Standard Error 2168.165527           Observations 15                         ANOVA               df SS MS F     Regression 2 268724699 134362349.5 28.58200688     Residual 12 56411301.01 4700941.751       Total 14 325136000                         Coefficients Standard Error t Stat P-value Upper 95% Lower 95.0% Intercept 163775.1236 5407.173152 30.28849253 1.05104E-12 175556.3418 151993.9054 Size 10.72518298 3.014327189 3.558068619 0.003937797 17.29283773 4.157528235 Age -284.254348 83.59835914 -3.400238365 0.005267391 -102.1091708 -466.3995252 Provide the proper interpretation for the slope of the size of houses (m1{“version”:”1.1″,”math”:”m1″}).