Given the bases \(\mathcal{B}=\{b_1,b_2\}\) and \(\mathcal{D…

Given the bases \(\mathcal{B}=\{b_1,b_2\}\) and \(\mathcal{D}=\{d_1,d_2\}\), which matrix below is the change of coordinates matrix from \(\mathcal{D}\) to \(\mathcal{B}\) if \(b_1=\begin{bmatrix}1\\2\end{bmatrix}\), \(b_2=\begin{bmatrix}3\\4\end{bmatrix}\), \(d_1=\begin{bmatrix}1\\4\end{bmatrix}\), and \(d_2=\begin{bmatrix}0\\8\end{bmatrix}\)

Which of the following are linear transformations? I) \( T\b…

Which of the following are linear transformations? I) \( T\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x+3y\\0\end{bmatrix}\)  II) \( T\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x+y+1\\2x-y\end{bmatrix}\)    III) \(T\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}xy\\2x-y\end{bmatrix}\)

Let \(T\colon \mathbb{R}^{2}\to \mathbb{R}^{2}\) denote the…

Let \(T\colon \mathbb{R}^{2}\to \mathbb{R}^{2}\) denote the linear transformation given by counterclockwise rotation about the origin by \(3\pi/4\) (radians).Let \(A\) be the matrix of \(T\) with respect to the standard basis of \(\mathbb{R}^{2}\).  Which of the following matrices is equal to \(A^{2}\)?

Use the two matrices:\(A\) = \(\begin{bmatrix} 3 & 2 &-1 &16…

Use the two matrices:\(A\) = \(\begin{bmatrix} 3 & 2 &-1 &16 & 1 \\ 2 & 2 & -4 & 12 &1 \\ 1 & -1 & 8 & 2 & 0 \\ 1 & 1 & -2 & 6 &1\end{bmatrix}\), \(B\) = \(\begin{bmatrix}1& 0 &3 &4 &0 \\ 0 & 1 & -5 & 2 & 0 \\0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{bmatrix}\) The matrix \(B\) is the reduced row echelon form of \(A\) (you do not have to check this.) Which set of vectors below is a basis for the column space of \(A\)?

Consider the linear system \(\begin{bmatrix} 2 & -3 \\ -6 &…

Consider the linear system \(\begin{bmatrix} 2 & -3 \\ -6 & 9 \\ 4 & -7\end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}=\begin{bmatrix} 1 \\ h \\ k\end{bmatrix} \) where \(h\) and \(k\) are real numbers. Which one of the following statements is true  about the solution?