Consider the series ∑n=1∞an{“version”:”1.1″,”math”:”\sum_{n=…

Consider the series ∑n=1∞an{“version”:”1.1″,”math”:”\sum_{n=1}^{\infty} a_n”} where an=nsin⁡(1/n){“version”:”1.1″,”math”:”a_n=n\sin(1/n)”}. Then limn→∞an={“version”:”1.1″,”math”:”\lim_{n\to\infty} a_n=”} _______ Does the series converge or diverge? (Write either converge or diverge) _______

Let f(x)=x{“version”:”1.1″,”math”:”\(f(x)=\sqrt{x}\)”}. Writ…

Let f(x)=x{“version”:”1.1″,”math”:”\(f(x)=\sqrt{x}\)”}. Write the functions resulting from the following transformations.(a) f1(x)={“version”:”1.1″,”math”:”\(f_1(x)=\)”} shift the graph of f(x){“version”:”1.1″,”math”:”\(f(x)\)”} two units to the left.(b) f2(x)={“version”:”1.1″,”math”:”\(f_2(x)=\)”} reflect the graph of f1(x){“version”:”1.1″,”math”:”\(f_1(x)\)”} about the x-axis.(c) f3(x)={“version”:”1.1″,”math”:”\(f_3(x)=\)”} shift the graph of f2(x){“version”:”1.1″,”math”:”\(f_2(x)\)”} three units down and then reflect about the y-axis.