Consider the ARMA(1,2) process  { X t : t ≥ 0 } {“version”…

Consider the ARMA(1,2) process  { X t : t ≥ 0 } {“version”:”1.1″,”math”:”\{X_t : t \ge 0\}”}given by  X t = 1 2 X t − 1 + e t + 1 4 e t − 1 − 1 4 e t − 2 . {“version”:”1.1″,”math”:”X_t = \frac{1}{2}X_{t-1}+e_t+\frac{1}{4}e_{t-1}-\frac{1}{4}e_{t-2}.”}Determine if this process is stationary by finding the roots of the AR characteristic polynomial.  Show your work as best you can below.