Suppose f ( x ) = d d x ( ∫ 0 x 2 sin ( t )…
Suppose f ( x ) = d d x ( ∫ 0 x 2 sin ( t ) t d t ) {“version”:”1.1″,”math”:”\(f(x)=\frac{d}{d x}\left(\int_0^{x^2} \frac{\sin (t)}{t} d t\right)\\\) “} Evaluate: lim x → 0 + f ( x ) 2 x {“version”:”1.1″,”math”:”\(\lim _{x \rightarrow 0^{+}} \frac{f(x)}{2 x}\)”}