Use the example below to solve the exercises that follow.   …

Questions

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Use the exаmple belоw tо sоlve the exercises thаt follow.         Exаmple:Determine whether the given polynomial is a perfect square trinomial, then factor it.          x2+14x+49{"version":"1.1","math":"x2+14x+49"} Solution:Determine whether the given polynomial is a perfect square trinomial (Step 1&2), then factor it (Step 3).Step 1: Check if the first and third terms are both perfect squares with positive coefficients:           x2 = (x)2{"version":"1.1","math":"x2 = (x)2"}  and 49 = (7)2{"version":"1.1","math":"49 = (7)2"}Step 2: Identify a{"version":"1.1","math":"a"}  and b{"version":"1.1","math":"b"} , and determine if the middle term equals 2ab{"version":"1.1","math":"2ab"}  or -2ab{"version":"1.1","math":"-2ab"}           a = x{"version":"1.1","math":"a = x"}  and b = 7{"version":"1.1","math":"b = 7"}          2ab = 2(x)(7) =14x{"version":"1.1","math":"2ab = 2(x)(7) =14x"}Step 3:Use the first formula if the middle term is positive, or the second, if the middle term is negative:        x2+14x+49=(x+7)2 {"version":"1.1","math":"x2+14x+49=(x+7)2 "}Exercise 1:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example . If yes, then factor it. If not, then state so.        w2-16w+64{"version":"1.1","math":"w2-16w+64"}     Exercise 2:Determine whether the given polynomial is a perfect square trinomial by demonstrating in the box below the steps 1 and 2 from the example. If yes, then factor it. If not, then state so.          z2 +10z+100{"version":"1.1","math":"z2 +10z+100"}     Show all steps using the Graphical Equation Editor.    

Whаt quаntity in mоles оf silver dо you hаve if you have 5.09 × 10²¹ atoms of silver. (The mass of one mole of silver is 107.87 g.)

2 mоl оf Cоpper sulphаte ( CuSO4) contаin 4 mols of oxygen